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Physical-layer Network Coding (PNC)

I PNC for two-way relay channel (TWRC):
I Enhance the throughput of a binary-input TWRC.[1]
I Approach the capacity upper bound of a Gaussian TWRC within 1

2
bits.[2]

I Compute-and-forward (CF) for a Gaussian multiple access relay channel

(MARC) [3].
I Multiple-user/q-ary input/fading.
I Relay decodes a linear function of the transmitted message.

[1] S. Zhang, S.-C. Liew, and P. P. Lam, “Hot topic: Physical layer network coding,” ACM MobiCom, pp.
358-365., Los Angeles, CA, Sep., 2006.
[2] W. Nam, S.-Y. Chung, and Y. H. Lee,“Capacity of the Gaussian two-way relay channel to within 1/2 bit,” IEEE
Trans. Inform. Theory, vol. 56, no. 11, pp. 5488-5494, Nov., 2010.
[3] B. Nazer and M. Gastpar, “Compute-and-forward: harnessing interference through structured codes,” IEEE
Trans. Inform. Theory, vol. 57, no. 10, pp. 6463-6486, Oct., 2011.



Compute-and-Forward (CF)
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I Map the noisy linear C− combined signal from the channel

y =
∑L

l=1
hlxl + z

to a linear (integer) function (network coding)

u =
∑L

l=1
alwl .

I Underlying principle: based on linear nested lattice codes
I The integer combinations of the lattice points (codewords) is another

lattice point (codeword).
I It can be mapped back to the linear combinations of the message u over

the finite field.



Nested Lattice

I Consider a lattice Λ and a sublattice Λ′ of Λ. They are nested as Λ′ ⊂ Λ.

I Fine lattice Λ
I Coarse lattice Λ′

I Nested Lattice Code: The set of lattice points of the fine lattice Λ in
the fundamental Voronoi region v of the coarse lattice Λ′.

i



Lattice Partition

I Let R be a discrete subring of C forming a principle ideal domain PID
(e.g., integer numbers, Gaussian integers Z[i ]).

I Define an R-lattice Λ = {rGΛ : r ∈ Rn} (R−module) and its sublattice of
Λ′.

I the set of the cosets of Λ′ in Λ, denoted by Λ/Λ′, forms an R-lattice
partition of Λ. The message space W = Λ/Λ′.



Lattice Network Coding (LNC)

I Encoder: maps a message w = λ+ Λ′ to a coset leader.

xi = ε (wi ) = φ (wi )− DΛ′ (φ (wi ))

Φ : W → Λ embedding each message to a lattice point in the same coset.

I Decoder: estimates an R−linear combination from the C−linear signal
and maps R−linear combination to a coset Λ/Λ′ by using linear labeling

y =
∑
i

hixi + z →
∑
i

aiwi = φ−1 (DΛ (αy))

Φ−1 : Λ→ Λ/Λ′, taking a lattice point λ in Λ, map to a coset λ+ Λ′ of
Λ′ in Λ.

I R is a subring of C, the linear labeling induces a nature bridge between
the C−linear combining and the R−linear combining in the message
space.



Lattice Network Coding (LNC)

h = [ 2.1 1.4 ]
a = [ 3 2 ]

Effective Noise: N + P|h− a|2

From: Nazer/Gastpar
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Lattice Network Coding (LNC)

The computation rate :

R(h, a) = log+
2

(
‖a‖2 − P|h∗a|2

1 + P‖h‖2

)



LNC Construction From Linear Code

How to construct LNC from linear code?

Complex Construction A

Algorithm 1 : Let π be a prime element in a PID R ⊂ C. Consider a linear
code C of length n over the finite field R/πR. An LNC Λ/Λ′ can be
constructed by Complex Construction A via

Λ = {λ ∈ Rn : σ(λ) ∈ C},

where σ is the natural projection from Rn to (R/πR)n, and Λ′ = (πrR)n, where
r ≥ 1.



LNC Construction From Linear Code

Proposition 1 : Let Λ/Λ′ be the LNC constructed by Algorithm 1 over R/πR.
Let [Ik Bk×(n−k)] be a k × n matrix over R such that σ([Ik Bk×(n−k)]) is a
generator matrix for C . The respective generator matrices MΛ for Λ and MΛ′

for Λ′ can be described by MΛ =
[
Ik Bk×(n−k)

0 πIn−k

]
and MΛ′ =

[
πr Ik π

rBk×(n−k)

0 πr In−k

]
.

Since MΛ′ =
[
πr Ik 0
0 πr−1In−k

]
MΛ, we have

Λ/Λ′ ∼= (R/πrR)k ⊕ (R/πr−1R)n−k ,

where ⊕ represents the direct sum of two R-modules.

For R = Z[i ] or Z[ω],

d2(Λ/Λ′) =

{
wmin

E (C), when r = 1
d2(Λ) = min(|π|2,wmin

E (C)), when r > 1
,

K(Λ/Λ′) = K(Λ) for r > 1, K(Λ) is the number of shortest nonzero vectors in
Λ.



LNC Construction From Linear Code

Corollary 1 : Let Λ/Λ′ be the LNC constructed by Algorithm 1 from a linear

code C over R/πR. When R = Z[ω], the nominal coding gain of Λ/Λ′ is

γc(Λ/Λ′) =


wmin

E (C)
√

3
2 |π|2(1−k/n)

, when r = 1

min(|π|2,wmin
E (C))

√
3

2 |π|2(1−k/n)
, when r > 1

The UBE on the decoding error probability can be written as

Pe(u→ û | h,a)

/

 K (Λ/Λ′) exp
(
− 9

5
wmin

E (C)

|π|2(1−k/n) SENRnorm

)
, when r = 1

K (Λ) exp
(
− 9

5
min(|π|2,wmin

E (C))

|π|2(1−k/n) SENRnorm

)
, when r > 1



LNC Construction From Linear Code

Example Codes

Rate-1/2 convolutional codes C over Z[i ]/(2 + 3i)Z[i ] (∼= F13) with maximum
wmin

E (C), and the corresponding LNCs Λ/Λ′ with Λ constructed from C by
Algorithm 1 and Λ′ = ((2 + 3i)Z[i ])n

v g(D) γc (Λ/Λ′) wmin
E (C) K(Λ/Λ′)

1
1 + 2D

2.22 (3.46dB) 8 4
2 + (1 + i)D

2
1 + D + (2i)D2

3.33 (5.22dB) 12 4
(−1− i) + (−1 + i)D + (−1− i)D2

3
2 + (1− i)D + (2i)D2 + (−2)D3

4.44 (6.47dB) 16 8
1 + (1 + i)D + iD2 + iD3

4∗
(−2i) + (−i)D + (2i)D2 + (−1)D3 + (i)D4

4.99 (6.98dB) 18 4
(−1) + 2D + 0D2 + (−1 + i)D3 + (1− i)D4

5∗
(−2) + (−i)D2 + (−1)D3 + (1− i)D4 + D5

5.82 (7.65dB) 21 16
(−1 + i) + (2i)D + (−2)D3 + (−1 + i)D4 + (−1− i)D5

∗ not exhaustive search



LNC Construction From Linear Code

Example Codes

Rate-1/2 convolutional codes C over Z[ω]/(4 + 3ω)Z[ω](∼= F13) with maximum
wmin

E (C), and the corresponding convolutional LNCs Λ/Λ′ with Λ constructed
from C by Algorithm 1 and Λ′ = ((4 + 3ω)Z[ω])n

v g(D) γc (Λ/Λ′) wmin
E (C) K(Λ/Λ′)

1
1 + D

2.56 (4.09dB) 8 12
(−1 + w) + (2 + w)D

2
1 + D + (−1 + w)D2

3.85 (5.85dB) 12 24
(−1 + w) + (1− w)D + (1 + w)D2

3
(2 + w) + (1 + 2w)D + (1 + 2w)D2 + (−1− 2w)D3

5.13 (7.10dB) 16 96
(−w) + (w)D + (w)D2 + (1 + w)D3

4∗
(−1) + (−w)D + (1−w)D2 + (−2−w)D3 + (1−w)D4

5.76 (7.61dB) 18 30
(2 + w) + (1 + w)D + (−1−w)D2 + (−1− 2w)D3 + D4

5∗
(1 + w) + (1 + w)D + (−1 + w)D2 + (−1 − 2w)D3 +

(−1− 2w)D4 + (−w)D5 5.76 (7.61dB) 18 6

(1 + w) + (−1 + w)D + (0)D2 + (1 + w)D3 + (−2 −
w)D4 + (1− w)D5

∗ not exhaustive search



LNC Construction From Linear Code

Complex Construction B

Algorithm 2 : Consider a linear code C of length n over R/πR subject to∑
1≤i≤n ci = 0 for each (c1, · · · , cn) ∈ C . Define

Λ = {λ , (λ1, · · · , λn) ∈ Rn : σ(λ) ∈ C ,
∑n

i=1
λi ≡ 0 mod π2}

where σ is the natural projection from R to (R/πR)n, and Λ′ = (πrR)n, where
r ≥ 2. In this way, Λ is an n-dimensional R-lattice and Λ′ is a sublattice of Λ.
An LNC Λ/Λ′ is thus constructed from C by Complex Construction B.



LNC Construction From Linear Code

Theorem 1 : Let Λ/Λ′ be an LNC constructed from an [n, k] linear code C over
R/πR by Algorithm 2. There exists a generator matrix MΛ for Λ and MΛ′ for
Λ′ in the form

MΛ =


Ik Bk×(n−k)

0

π −π 0 ... 0

. . .
0 ... 0 π −π
0 0 ... 0 π2

 ,MΛ′ =


πr Ik πrBk×(n−k)

0

πr −πr 0 ... 0

. . .
0 ... 0 πr −πr

0 0 ... 0 πr

 (1)

Consequently, MΛ′ =

[
πr Ik 0 0
0 πr−1In−k−1 0

0 0 πr−2

]
MΛ, and hence

Λ/Λ′ ∼= (R/πrR)k ⊕ (R/πr−1R)n−k−1 ⊕ (R/πr−2R).

Moreover, in the special case that R = Z[i ] or Z[ω],

d2(Λ/Λ′) = d2(Λ) = min(2|π|2,wmin
E (C ))

K (Λ/Λ′) = K (Λ), when |π|2 6= 2



LNC Construction From Linear Code

Corollary 2 : When R = Z[ω], the nominal coding gain of the LNC Λ/Λ′

constructed from a linear code over R/πR by Algorithm 2 is

γc(Λ/Λ′) =
min(2|π|2,wmin

E (C))
√

3
2
|π|2(1−(k−1)/n)

.

The UBE on the decoding error probability can be written as

Pe(u→ û | h,a) / K(Λ) exp

(
−9

5

min(2|π|2,wmin
E (C))

|π|2(1−(k−1)/n)
SENRnorm

)
.



LNC Construction From Linear Code

Example Codes

Parameters in various LNCs Λ/Λ′ constructed from [12, 6, 6] ternary Golay code
over F3

∼= Z[ω]/πZ[ω] by different methods. π = 1 + 2ω

Λ
By Complex Construction A By Complex Construction B

Complex Leech Lattice
(Algorithm 1) (Algorithm 2)

Λ′ = (Z[w ]/πZ[w ])12 (Z[w ]/π2Z[w ])12 (Z[w ]/π2Z[w ])12 (Z[w ]/π3Z[w ])12

ρ = 1
2

log2 3 3
2

log2 3 17
12

log2 3 3
2

log2 3

d2(Λ/Λ′) = 6 3 6 3

γc (Λ/Λ′) = 4 (6.02 dB) 2 (3.01 dB) 3.65 (5.62 dB) 4 (6.02 dB)



Simulation Results
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Simulation Results
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LNC over GF(4)

Motivation

I In practical implementation of communication systems, signal
constellations size is always power of 2.

I Lattice partition R/πR that is isomorphic to a finite field of size 2m

I The only finite fields of characteristic 2 that can be represented by R/πR

are

I GF(2) ∼= Z/2Z ∼= Z[i ]/(1 + i)Z[i ];
I GF(4) ∼= Z[ω]/2Z[ω].



LNC over GF(4): Signal Constellation

I In information theory, random dither is required to make the quantization
noise to be uniformly distributed and independent of encoded signals.

I For practical systems, a fixed dither is required to minimize the average
transmission power.

Proposition 3 : The optimum average power for the baseline LNC is 1
2
|γ|2,

which can be obtained by six possible dither vectors d = γ(d1, d2, d3, . . . , dn),

where dj = {±ω
2
,±ω

2

2
,± 1

2
}.



LNC over GF(4): Code Construction

Let C be an [n, k] linear code over GF(4). Rate- 2k
n

LNC Λ/Λ′ can be
constructed from the linear code C by Complex Construction A:

Λ = {λ ∈ γZ[ω]n : σ(γ−1λ) ∈ C},Λ′ = γ(2Z[ω])n

Λ/Λ′ ∼= (Z[ω]/2Z[ω])k ∼= C .

I γ: scaling factor to control the transmission power.

I σ: natural projection from Z[ω]n onto (Z[ω]/2Z[ω])n

Proposition 4 : For the LNC constructed above, we have

d2(Λ/Λ′) = |γ|2wH(C) and K(Λ/Λ′) = 2wH (C)K(C),

where wH(C) is the minimum Hamming distance of C and K(C) is the number
of codewords with this weight.



LNC over GF(4): Design Example

Parameters of rate-1/2 convolutional codes over GF(4)

v g(D) wH (C) γc (Λ/Λ′)
1 [1 1], [ω 1] 4 3.63 dB
2 [1 1 1], [1 ω 1] 6 5.40 dB

3 [1 ω2 ω ω2], [ω ω2 ω2 ω2] 8 6.65 dB

4 [ω ω2 ω2 ω ω2], [ω2 0 1 ω2 ω2] 9 7.16 dB

5 [ω 0 1 ω2 ω2 1], [ω ω2 ω2 ω2 ω 1] 11 8.03 dB

Parameters of BCH codes over GF(4)

n k g(X ) wH (C) γc (Λ/Λ′) K(C)

15
9 [1 ω2 1 1 ω ω 1] 5 5.21 dB 189

7 [1 0 1 ω2 ω2 1 ω2 0 ω] 7 5.86 dB 405

63
54 [1 0 ω2 1 0 1 1 ω2 ω 1] 5 6.76 dB 8505

50 [1 ω ω 1 ω ω2 0 ω2 ω2 ω2 0 1 0 ω2] 7 7.83 dB 3591



LNC over GF(4m)

An [n, k] linear code C over GF(4m) can then be expanded to an [mn,mk] code
Ce over GF(4) in terms of the basis {1, β, · · · , βm−1} by Ce = {φ(c) : c ∈ C}.

I β: a primitive element of GF(4m).

I {1, β, · · · , βm−1}: a natural basis of GF(4m) over the subfield GF(4).

I Natural mapping from GF(4m) onto the m-dimensional vector space
GF(4)m via

φ(
∑m−1

j=0
cjβ

j) = (c0, · · · , cm−1).

Proposition 5: An mn-dimensional, rate- 2k
n

LNC can be constructed from C

Λ = {λ ∈ γZ[ω]mn : σ(γ−1λ) = φ(c) for some c ∈ C}
Λ′ = γ(2Z[ω])mn

I Λ/Λ′ ∼= GF(4)mk ∼= φ(C)

I |γ|2wH(C) ≤ d2(Λ/Λ′) = |γ|2wH(Ce) < |γ|2mwH(C)

I K(Λ/Λ′) = 2wH (Ce)K(Ce)



LNC over GF(4m)

Proposition 6: Consider an LNC Λ/Λ′ constructed from a [4m − 1, 4m − dRS ]
narrow-sense RS code over GF(4m). When dRS ≥ 4m−1

3
, the LNC has rate

larger than 4/3, and

d2(Λ/Λ′) ≤ min

{
4m − 1

3
|γ|2,mdRS |γ|2

}
In particular, when dRS = 4m−1

3
,

d2(Λ/Λ′) = |γ|2dRS ,K(Λ/Λ′) ≤ 2dRS · 3m
(

4m − 1
dRS

)
.



LNC over GF(4m): Numerical Results
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Multi-Way Relay Channel (MWRC)

I System model for both multiple access (MAC) phase and broad-cast (BC)
phase.

R 

User 1 User 2 User L 

1h 2h Lh

R 

User 1 User 2 User L 

'
1h '

2h '
Lh

(a) Multiple access phase (b) Broadcast phase 

User  l

lh

User  l

'
lh

I L users exchange information via a simple relay.
I No direct link among users.
I Channel remains unchanged during the MAC and BC phases.
I Assume relay knows the Channel State Information (CSI) of all

users.



Multi-Way Relay Channel (MWRC)

I MAC phase

I Two users transmit simultaneously at one time (pair-wise
transmission).

I Relay receives superimposed signal from each pair of users.
I Relay computes the corresponding network coded messages

after each reception.
I In total (L− 1) uplink transmission.

I BC phase

I Relay broadcasts network coded messages to the users.
I In total (L− 1) downlink transmission.
I Users need all (L− 1) downlink packets to decode all other

users’s message.



Successive Pair-Wise Transmission

I In a sequential order.

I At i−th time slot:

y(i,i+1) = hixi + hi+1xi+1 + n

W(i,i+1) = aiwi + ai+1wi+1

I Total (L− 1) uplink transmission.

I In BC phase, each user can retrieve all other user’s message after receive
all the network coded message from the relay.



Successive Pair-Wise Transmission

I Pair-wise transmission scheduling matrix with size (L− 1)× L.

S =


1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1


I S has rank of (L− 1).
I si,j : flag for whether user j is activated in time slot i .
I si,j = 1 : active; si,j = 0 : silent.

I Transmission rate for each user:

Rl <


RC

1,2 if l = 1

min{RC
l−1,l ,R

C
l,l+1} if l = 2, · · · , (L− 1)

RC
L−1,L if l = L

I Sum-rate for uplink:

Rsum =
L∑

l=1

Rl .



Opportunistic Pair-Wise Transmission

I Successive pair-wise transmission is simple, but does not consider the
effect of time-varying fading channel.

I Key for the opportunistic pair-wise transmission: At each time slot, a pair
of users with the maximum computation rate is selected for transmission.

I For each user to recover all other users’ message in broadcasted phase,
the scheduled user-pair in these (L− 1) time slots should be linearly
independent.

I Transmission rate for user l :

Rl < min{RC
j1,l ,R

C
j2,l , · · · ,R

C
l,k1
,RC

l,k2
, · · · }

where 1 ≤ j1, j2, · · · ≤ l − 1, and l + 1 ≤ k1, k2, · · · ≤ L.

I Sum-rate

Rsum =
L∑

l=1

Rl .



Numerical Results

User transmission sum-rate

I Consider 3-user and 4-user MWRCs.

Figure: Z[w ]-based LNC. Figure: Z[i ]-based LNC.

I At ρ = 30dB:

I 1.25bits/s/Hz improvement for 3-user MWRCs.
I 2bits/s/Hz improvement for 4-user MWRCs.



Numerical Results

Uncoded system

I SER performance for uncoded Z[i ]-based LNC.

Figure: 3-user MWRC. Figure: 4-user MWRC.

I At 10−2 SER level:

I 3dB gain for a 3-user MWRC.
I 4.5dB gain for a 4-user MWRC.

I Similar performance found for Z[i ]-based uncoded system.



Numerical Results

Channel coded system

I Optimized memory order 1 convolutional lattice code at rate 1
2
.

I Information sequence length is 99.

Figure: Z[i ]-based 4-user. Figure: Z[w ]-based 4-user.

I 2.5dB gain at 10−2 FER level.



Summary

I LNC Construction from linear codes.

I LNC over GF(4)

I Opportunistic Pair-wise Compute-and-Forward
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