

Lattice-Partition-Based Physical-Layer Network Coding over GF(4)

Jinhong Yuan

School of Electrical Engineering and Telecommunication The University of New South Wales, Sydney, Australia

June 26, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Physical-layer Network Coding

Lattice Partition

LNC Construction From Linear Code

LNC over GF(4)

Summary

Physical-layer Network Coding (PNC)

PNC for two-way relay channel (TWRC):

- Enhance the throughput of a binary-input TWRC.[1]
- Approach the capacity upper bound of a Gaussian TWRC within $\frac{1}{2}$ bits.[2]
- Compute-and-forward (CF) for a Gaussian multiple access relay channel (MARC) [3].
 - Multiple-user/q-ary input/fading.
 - Relay decodes a linear function of the transmitted message.

S. Zhang, S.-C. Liew, and P. P. Lam, "Hot topic: Physical layer network coding," ACM MobiCom, pp. 358-365., Los Angeles, CA, Sep., 2006.
 W. Nam, S.-Y. Chung, and Y. H. Lee, "Capacity of the Gaussian two-way relay channel to within 1/2 bit," *IEEE Trans. Inform. Theory*, vol. 56, no. 11, pp. 5488-5494, Nov., 2010.
 B. Nazer and M. Gastpar, "Compute-and-forward: harnessing interference through structured codes," *IEEE*

Trans. Inform. Theory, vol. 57, no. 10, pp. 6463-6486, Oct., 2011.

Compute-and-Forward (CF)

Map the noisy linear C− combined signal from the channel

$$\mathbf{y} = \sum_{l=1}^{L} h_l \mathbf{x}_l + \mathbf{z}$$

to a linear (integer) function (network coding)

$$\mathbf{u} = \sum_{l=1}^{L} a_l \mathbf{w}_l.$$

- Underlying principle: based on linear nested lattice codes
 - The integer combinations of the lattice points (codewords) is another lattice point (codeword).
 - It can be mapped back to the linear combinations of the message u over the finite field.

Nested Lattice

- Consider a lattice Λ and a sublattice Λ' of Λ . They are **nested** as $\Lambda' \subset \Lambda$.
 - Fine lattice Λ
 - Coarse lattice Λ'
- Nested Lattice Code: The set of lattice points of the fine lattice Λ in the fundamental Voronoi region v of the coarse lattice Λ'.

Lattice Partition

- Let R be a discrete subring of C forming a principle ideal domain PID (e.g., integer numbers, Gaussian integers Z[i]).
- ▶ Define an **R-lattice** $\Lambda = \{rG_{\Lambda} : r \in \mathbb{R}^n\}$ (*R*-module) and its sublattice of Λ' .
- ► the set of the cosets of Λ' in Λ, denoted by Λ/Λ', forms an R-lattice partition of Λ. The message space W = Λ/Λ'.

• **Encoder:** maps a message $w = \lambda + \Lambda'$ to a coset leader.

$$x_{i} = \varepsilon (w_{i}) = \phi (w_{i}) - D_{\Lambda'} (\phi (w_{i}))$$

 $\Phi: \mathcal{W} \to \Lambda$ embedding each message to a lattice point in the same coset.

Decoder: estimates an *R*-linear combination from the C-linear signal and maps *R*-linear combination to a coset Λ/Λ' by using linear labeling

$$y = \sum_{i} h_{i} x_{i} + z \quad \rightarrow \quad \sum_{i} a_{i} w_{i} = \phi^{-1} \left(D_{\Lambda} \left(\alpha y \right) \right)$$

 $\Phi^{-1}:\Lambda\to\Lambda/\Lambda', \text{ taking a lattice point }\lambda\text{ in }\Lambda,\text{ map to a coset }\lambda+\Lambda'\text{ of }\Lambda'\text{ in }\Lambda.$

▶ R is a subring of C, the linear labeling induces a nature bridge between the C-linear combining and the R-linear combining in the message space.

From: Nazer/Gastpar

 $\label{eq:h} \begin{array}{l} h = \left[\begin{array}{cc} 2.1 & 1.4 \end{array} \right] \\ a = \left[\begin{array}{cc} 3 & 2 \end{array} \right] \\ \end{array}$ Effective Noise: $N + P |h-a|^2$

From: Nazer/Gastpar

 $\begin{aligned} \alpha h &= \left[\begin{array}{cc} \alpha 2.1 & \alpha 1.4 \end{array} \right] \\ a &= \left[\begin{array}{cc} 3 & 2 \end{array} \right] \end{aligned}$ Effective Noise: $\alpha^2 N + P |\alpha h - a|^2$

$$\alpha \mathbf{h} = \begin{bmatrix} \alpha 2.1 & \alpha 1.4 \end{bmatrix}$$
$$\mathbf{a} = \begin{bmatrix} 3 & 2 \end{bmatrix}$$

Effective Noise: $\alpha^2 N + P |\alpha h - a|^2$

From: Nazer/Gastpar

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

How to construct LNC from linear code?

Complex Construction A

Algorithm 1 : Let π be a prime element in a PID $R \subset \mathbb{C}$. Consider a linear code C of length n over the finite field $R/\pi R$. An LNC Λ/Λ' can be constructed by Complex Construction A via

$$\Lambda = \{ \boldsymbol{\lambda} \in R^n : \sigma(\boldsymbol{\lambda}) \in C \},\$$

where σ is the natural projection from R^n to $(R/\pi R)^n$, and $\Lambda' = (\pi' R)^n$, where $r \ge 1$.

Proposition 1: Let Λ/Λ' be the LNC constructed by Algorithm 1 over $R/\pi R$. Let $[I_k \ B_{k \times (n-k)}]$ be a $k \times n$ matrix over R such that $\sigma([I_k \ B_{k \times (n-k)}])$ is a generator matrix for C. The respective generator matrices \mathbf{M}_Λ for Λ and $\mathbf{M}_{\Lambda'}$ for Λ' can be described by $\mathbf{M}_\Lambda = \begin{bmatrix} I_k \ B_{k \times (n-k)} \\ \mathbf{0} \ \pi I_{n-k} \end{bmatrix}$ and $\mathbf{M}_{\Lambda'} = \begin{bmatrix} \pi' I_k \ \pi' B_{k \times (n-k)} \\ \mathbf{0} \ \pi' I_{n-k} \end{bmatrix}$. Since $\mathbf{M}_{\Lambda'} = \begin{bmatrix} \pi' I_k \ \mathbf{0} \\ \mathbf{0} \ \pi^{r-1} I_{n-k} \end{bmatrix} \mathbf{M}_\Lambda$, we have $\Lambda/\Lambda' \cong (R/\pi^r R)^k \oplus (R/\pi^{r-1} R)^{n-k}$,

where \oplus represents the direct sum of two *R*-modules.

For $R = \mathbb{Z}[i]$ or $\mathbb{Z}[\omega]$,

$$d^2(\Lambda/\Lambda') = \left\{ egin{array}{c} w_E^{min}(C), & ext{when } r=1 \ d^2(\Lambda) = \min(|\pi|^2, w_E^{min}(C)), & ext{when } r>1 \end{array}
ight.,$$

 $K(\Lambda/\Lambda') = K(\Lambda)$ for r > 1, $K(\Lambda)$ is the number of shortest nonzero vectors in Λ .

(日) (日) (日) (日) (日) (日) (日) (日)

Corollary 1 : Let Λ/Λ' be the LNC constructed by Algorithm 1 from a linear code *C* over $R/\pi R$. When $R = \mathbb{Z}[\omega]$, the nominal coding gain of Λ/Λ' is

$$\gamma_{c}(\Lambda/\Lambda') = \begin{cases} \frac{w_{E}^{min}(C)}{\frac{\sqrt{3}}{2}|\pi|^{2(1-k/n)}}, & \text{when } r = 1\\ \frac{\min(|\pi|^{2}, w_{E}^{min}(C))}{\frac{\sqrt{3}}{2}|\pi|^{2(1-k/n)}}, & \text{when } r > 1 \end{cases}$$

The UBE on the decoding error probability can be written as

$$\begin{split} & \mathcal{P}_{e}(\mathbf{u} \rightarrow \hat{\mathbf{u}} \mid \mathbf{h}, \mathbf{a}) \\ & \lesssim \left\{ \begin{array}{l} \mathcal{K}(\Lambda/\Lambda') \exp\left(-\frac{9}{5} \frac{w_{E}^{min}(C)}{|\pi|^{2(1-k/n)}} \mathrm{SENR_{norm}}\right), & \text{when } r = 1 \\ \mathcal{K}(\Lambda) \exp\left(-\frac{9}{5} \frac{\min(|\pi|^{2}, w_{E}^{min}(C))}{|\pi|^{2(1-k/n)}} \mathrm{SENR_{norm}}\right), & \text{when } r > 1 \end{array} \right. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example Codes

Rate-1/2 convolutional codes *C* over $\mathbb{Z}[i]/(2+3i)\mathbb{Z}[i] \cong \mathbb{F}_{13}$ with maximum $w_E^{min}(C)$, and the corresponding LNCs Λ/Λ' with Λ constructed from *C* by Algorithm 1 and $\Lambda' = ((2+3i)\mathbb{Z}[i])^n$

v	g(D)	$\gamma_c(\Lambda/\Lambda')$	$w_E^{min}(C)$	$K(\Lambda/\Lambda')$
1	1 + 2D	2.22 (3.46dB)	8	4
	2 + (1 + 1)D			
2	$1 + D + (2i)D^2$	3 33 (5 22dB)	12	4
	$(-1 - i) + (-1 + i)D + (-1 - i)D^2$	3.33 (3.22dB)		
3	$2 + (1 - i)D + (2i)D^2 + (-2)D^3$	4 44 (6 47dR)	16	0
	$1 + (1 + i)D + iD^2 + iD^3$	4.44 (0.470D)	10	0
4*	$(-2i) + (-i)D + (2i)D^2 + (-1)D^3 + (i)D^4$	4 00 (6 08dP)	18	4
	$(-1) + 2D + 0D^2 + (-1+i)D^3 + (1-i)D^4$	4.99 (0.900D)		
5*	$(-2) + (-i)D^2 + (-1)D^3 + (1-i)D^4 + D^5$	5 92 (7 65dP)	21	16
	$(-1+i) + (2i)D + (-2)D^3 + (-1+i)D^4 + (-1-i)D^5$	3.02 (1.030D)		
* not exhaustive search				

Example Codes

Rate-1/2 convolutional codes *C* over $\mathbb{Z}[\omega]/(4+3\omega)\mathbb{Z}[\omega] \cong \mathbb{F}_{13}$ with maximum $w_E^{min}(C)$, and the corresponding convolutional LNCs Λ/Λ' with Λ constructed from *C* by Algorithm 1 and $\Lambda' = ((4+3\omega)\mathbb{Z}[\omega])^n$

v	g (<i>D</i>)	$\gamma_c(\Lambda/\Lambda')$	$w_E^{min}(C)$	$K(\Lambda/\Lambda')$
1	$\frac{1+D}{(-1+w)+(2+w)D}$	2.56 (4.09dB)	8	12
2	$\frac{1+D+(-1+w)D^2}{(-1+w)+(1-w)D+(1+w)D^2}$	3.85 (5.85dB)	12	24
3	$\frac{(2+w) + (1+2w)D + (1+2w)D^2 + (-1-2w)D^3}{(-w) + (w)D + (w)D^2 + (1+w)D^3}$	5.13 (7.10dB)	16	96
4*	$\frac{(-1) + (-w)D + (1-w)D^2 + (-2-w)D^3 + (1-w)D^4}{(2+w) + (1+w)D + (-1-w)D^2 + (-1-2w)D^3 + D^4}$	5.76 (7.61dB)	18	30
5*	$ \begin{array}{l} (1+w) + (1+w)D + (-1+w)D^2 + (-1-2w)D^3 + \\ (-1-2w)D^4 + (-w)D^5 \\ (1+w) + (-1+w)D + (0)D^2 + (1+w)D^3 + (-2-w)D^2 \\ \end{array} $	5.76 (7.61dB)	18	6
	$w)D^4 + (1 - w)D^5$			
* not exhaustive search				

Complex Construction B

Algorithm 2 : Consider a linear code C of length n over $R/\pi R$ subject to $\sum_{1 \le i \le n} c_i = 0$ for each $(c_1, \cdots, c_n) \in C$. Define

$$\Lambda = \{ \boldsymbol{\lambda} \triangleq (\lambda_1, \cdots, \lambda_n) \in R^n : \sigma(\boldsymbol{\lambda}) \in C, \sum_{i=1}^n \lambda_i \equiv 0 \mod \pi^2 \}$$

where σ is the natural projection from R to $(R/\pi R)^n$, and $\Lambda' = (\pi' R)^n$, where $r \ge 2$. In this way, Λ is an *n*-dimensional *R*-lattice and Λ' is a sublattice of Λ . An LNC Λ/Λ' is thus constructed from C by Complex Construction B.

Theorem 1: Let Λ/Λ' be an LNC constructed from an [n, k] linear code C over $R/\pi R$ by Algorithm 2. There exists a generator matrix \mathbf{M}_{Λ} for Λ and $\mathbf{M}_{\Lambda'}$ for Λ' in the form

$$\mathbf{M}_{\Lambda} = \begin{bmatrix} {}^{l_{k}} & {}^{B_{k \times (n-k)}} & \\ \pi - \pi & 0 & \dots & 0 \\ 0 & \ddots & \\ 0 & 0 & \dots & 0 & \pi^{2} \end{bmatrix}, \mathbf{M}_{\Lambda'} = \begin{bmatrix} {}^{\pi' l_{k}} & {}^{\pi' B_{k \times (n-k)}} & \\ \pi' - \pi' & 0 & \dots & 0 \\ 0 & \ddots & 0 & \pi^{r} & -\pi^{r} \\ 0 & 0 & \dots & 0 & \pi^{r} \end{bmatrix}$$
(1)
Consequently, $\mathbf{M}_{\Lambda'} = \begin{bmatrix} {}^{\pi' l_{k}} & \mathbf{0} & \mathbf{0} & \\ \mathbf{0} & {}^{\pi' - 1} l_{n-k-1} & \mathbf{0} \\ \mathbf{0} & {}^{\pi' - 2} \end{bmatrix} \mathbf{M}_{\Lambda}$, and hence
 $\Lambda/\Lambda' \cong (R/\pi^{r}R)^{k} \oplus (R/\pi^{r-1}R)^{n-k-1} \oplus (R/\pi^{r-2}R).$

Moreover, in the special case that $R = \mathbb{Z}[i]$ or $\mathbb{Z}[\omega]$,

$$\begin{array}{lll} d^2(\Lambda/\Lambda') &=& d^2(\Lambda) = \min(2|\pi|^2, w_E^{min}(C)) \\ K(\Lambda/\Lambda') &=& K(\Lambda), \ {\rm when} \ |\pi|^2 \neq 2 \end{array}$$

Corollary 2 : When $R = \mathbb{Z}[\omega]$, the nominal coding gain of the LNC Λ/Λ' constructed from a linear code over $R/\pi R$ by Algorithm 2 is

$$\gamma_{c}(\Lambda/\Lambda') = \frac{\min(2|\pi|^{2}, w_{E}^{min}(C))}{\frac{\sqrt{3}}{2}|\pi|^{2(1-(k-1)/n)}}.$$

The UBE on the decoding error probability can be written as

$$P_e(\mathbf{u} o \hat{\mathbf{u}} \mid \mathbf{h}, \mathbf{a}) \lessapprox \mathcal{K}(\Lambda) \exp\left(-rac{9}{5} rac{\min(2|\pi|^2, w_E^{min}(C))}{|\pi|^{2(1-(k-1)/n)}} \mathrm{SENR}_{\mathrm{norm}}
ight).$$

Example Codes

Parameters in various LNCs Λ/Λ' constructed from [12, 6, 6] ternary Golay code over $\mathbb{F}_3 \cong \mathbb{Z}[\omega]/\pi\mathbb{Z}[\omega]$ by different methods. $\pi = 1 + 2\omega$

۸	By Complex Construction A (Algorithm 1)		By Complex Construction B (Algorithm 2)	Complex Leech Lattice	
$\Lambda' =$	$(\mathbb{Z}[w]/\pi\mathbb{Z}[w])^{12}$	$(\mathbb{Z}[w]/\pi^2\mathbb{Z}[w])^{12}$	$(\mathbb{Z}[w]/\pi^2\mathbb{Z}[w])^{12}$	$(\mathbb{Z}[w]/\pi^3\mathbb{Z}[w])^{12}$	
$\rho =$	$\frac{1}{2} \log_2 3$	3/2 log ₂ 3	$\frac{17}{12} \log_2 3$	32 log ₂ 3	
$d^2(\Lambda/\Lambda') =$	6	3	6	3	
$\gamma_c(\Lambda/\Lambda') =$	4 (6.02 dB)	2 (3.01 dB)	3.65 (5.62 dB)	4 (6.02 dB)	

Simulation Results

Simulation Results

◆□> ◆□> ◆三> ◆三> ・三 のへの

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

- In practical implementation of communication systems, signal constellations size is always power of 2.
- Lattice partition $R/\pi R$ that is isomorphic to a finite field of size 2^m
- \blacktriangleright The only finite fields of characteristic 2 that can be represented by $R/\pi R$ are

•
$$GF(2) \cong \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}[i]/(1+i)\mathbb{Z}[i];$$

• $GF(4) \cong \mathbb{Z}[\omega]/2\mathbb{Z}[\omega].$

LNC over GF(4): Signal Constellation

- In information theory, random dither is required to make the quantization noise to be uniformly distributed and independent of encoded signals.
- For practical systems, a fixed dither is required to minimize the average transmission power.

Proposition 3: The optimum average power for the baseline LNC is $\frac{1}{2}|\gamma|^2$, which can be obtained by six possible dither vectors $\mathbf{d} = \gamma(d_1, d_2, d_3, \dots, d_n)$, where $d_j = \{\pm \frac{\omega}{2}, \pm \frac{\omega^2}{2}, \pm \frac{1}{2}\}$.

LNC over GF(4): Code Construction

Let *C* be an [n, k] linear code over GF(4). Rate- $\frac{2k}{n}$ LNC Λ/Λ' can be constructed from the linear code *C* by Complex Construction A:

$$\begin{split} \Lambda &= \{ \boldsymbol{\lambda} \in \gamma \mathbb{Z}[\omega]^n : \sigma(\gamma^{-1}\boldsymbol{\lambda}) \in C \}, \Lambda' = \gamma(2\mathbb{Z}[\omega])^n \\ & \Lambda/\Lambda' \cong \left(\mathbb{Z}[\omega]/2\mathbb{Z}[\omega] \right)^k \cong C. \end{split}$$

• γ : scaling factor to control the transmission power.

σ: natural projection from Z[ω]ⁿ onto (Z[ω]/2Z[ω])ⁿ

Proposition 4 : For the LNC constructed above, we have

$$d^2(\Lambda/\Lambda') = |\gamma|^2 w_H(C) \text{ and } K(\Lambda/\Lambda') = 2^{w_H(C)} K(C),$$

where $w_H(C)$ is the minimum Hamming distance of C and K(C) is the number of codewords with this weight.

LNC over GF(4): Design Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Parameters of rate-1/2 convolutional codes over GF(4)

v	g(D)	w _H (C)	$\gamma_c(\Lambda/\Lambda')$
1	$[1 \ 1], [\omega \ 1]$	4	3.63 dB
2	[1 1 1], [1 ω 1]	6	5.40 dB
3	$[1 \ \omega^2 \ \omega \ \omega^2], \ [\omega \ \omega^2 \ \omega^2 \ \omega^2]$	8	6.65 dB
4	$[\omega \ \omega^2 \ \omega^2 \ \omega \ \omega^2], \ [\omega^2 \ 0 \ 1 \ \omega^2 \ \omega^2]$	9	7.16 dB
5	$[\omega \ 0 \ 1 \ \omega^2 \ \omega^2 \ 1], \ [\omega \ \omega^2 \ \omega^2 \ \omega^2 \ \omega \ 1]$	11	8.03 dB

Parameters of BCH codes over GF(4)

n	k	g(X)	$w_H(C)$	$\gamma_c(\Lambda/\Lambda')$	K(C)
15	9	$[1 \omega^2 1 1 \omega \omega 1]$	5	5.21 dB	189
	7	$[1 \ 0 \ 1 \ \omega^2 \ \omega^2 \ 1 \ \omega^2 \ 0 \ \omega]$	7	5.86 dB	405
63	54	$[1 \ 0 \ \omega^2 \ 1 \ 0 \ 1 \ 1 \ \omega^2 \ \omega \ 1]$	5	6.76 dB	8505
	50	$[1 \omega \omega 1 \omega \omega^2 0 \omega^2 \omega^2 \omega^2 0 1 0 \omega^2]$	7	7.83 dB	3591

LNC over GF(4^m)

An [n, k] linear code C over GF(4^m) can then be expanded to an [mn, mk] code C_e over GF(4) in terms of the basis $\{1, \beta, \dots, \beta^{m-1}\}$ by $C_e = \{\phi(\mathbf{c}) : \mathbf{c} \in C\}$.

- β : a primitive element of $GF(4^m)$.
- $\{1, \beta, \dots, \beta^{m-1}\}$: a natural basis of $GF(4^m)$ over the subfield GF(4).
- Natural mapping from GF(4^m) onto the *m*-dimensional vector space GF(4)^m via

$$\phi(\sum_{j=0}^{m-1}c_j\beta^j)=(c_0,\cdots,c_{m-1}).$$

Proposition 5: An *mn*-dimensional, rate- $\frac{2k}{n}$ LNC can be constructed from C

$$\Lambda = \{ \boldsymbol{\lambda} \in \gamma \mathbb{Z}[\omega]^{mn} : \sigma(\gamma^{-1}\boldsymbol{\lambda}) = \phi(\mathbf{c}) \text{ for some } \mathbf{c} \in C \}$$

$$\Lambda' = \gamma(2\mathbb{Z}[\omega])^{mn}$$

Proposition 6: Consider an LNC Λ/Λ' constructed from a $[4^m - 1, 4^m - d_{RS}]$ narrow-sense RS code over GF(4^{*m*}). When $d_{RS} \ge \frac{4^m - 1}{3}$, the LNC has rate larger than 4/3, and

$$d^2(\Lambda/\Lambda') \leq \min\left\{rac{4^m-1}{3}|\gamma|^2, \mathit{md}_{\mathit{RS}}|\gamma|^2
ight\}.$$

In particular, when $d_{RS} = \frac{4^m - 1}{3}$,

$$d^2(\Lambda/\Lambda') = |\gamma|^2 d_{RS}, K(\Lambda/\Lambda') \leq 2^{d_{RS}} \cdot 3m \left(egin{array}{c} 4^m - 1 \ d_{RS} \end{array}
ight).$$

LNC over GF(4^m): Numerical Results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

LNC over GF(4^m): Numerical Results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Multi-Way Relay Channel (MWRC)

 System model for both multiple access (MAC) phase and broad-cast (BC) phase.

- L users exchange information via a simple relay.
- No direct link among users.
- Channel remains unchanged during the MAC and BC phases.
- Assume relay knows the Channel State Information (CSI) of all users.

Multi-Way Relay Channel (MWRC)

MAC phase

- Two users transmit simultaneously at one time (pair-wise transmission).
- ▶ Relay receives superimposed signal from each pair of users.
- Relay computes the corresponding network coded messages after each reception.
- In total (L-1) uplink transmission.

BC phase

- Relay broadcasts network coded messages to the users.
- In total (L-1) downlink transmission.
- ► Users need all (L 1) downlink packets to decode all other users's message.

Successive Pair-Wise Transmission

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

In a sequential order.

At *i*—th time slot:

$$y_{(i,i+1)} = h_i x_i + h_{i+1} x_{i+1} + n$$

 $W_{(i,i+1)} = a_i w_i + a_{i+1} w_{i+1}$

- ▶ Total (*L* − 1) uplink transmission.
- In BC phase, each user can retrieve all other user's message after receive all the network coded message from the relay.

Successive Pair-Wise Transmission

Pair-wise transmission scheduling matrix with size $(L-1) \times L$.

• S has rank of (L-1).

- $s_{i,j}$: flag for whether user j is activated in time slot i.
- $s_{i,j} = 1$: active; $s_{i,j} = 0$: silent.

Transmission rate for each user:

$$R_{l} < \begin{cases} R_{1,2}^{C} & \text{if } l = 1 \\ \min\{R_{l-1,l}^{C}, R_{l,l+1}^{C}\} & \text{if } l = 2, \cdots, (L-1) \\ R_{L-1,L}^{C} & \text{if } l = L \end{cases}$$

Sum-rate for uplink:

$$R_{\rm sum} = \sum_{l=1}^{L} R_l.$$

Opportunistic Pair-Wise Transmission

- Successive pair-wise transmission is simple, but does not consider the effect of time-varying fading channel.
- Key for the opportunistic pair-wise transmission: At each time slot, a pair of users with the maximum computation rate is selected for transmission.
- For each user to recover all other users' message in broadcasted phase, the scheduled user-pair in these (L 1) time slots should be linearly independent.
- Transmission rate for user I:

$$R_{l} < \min\{R_{j_{1},l}^{C}, R_{j_{2},l}^{C}, \cdots, R_{l,k_{1}}^{C}, R_{l,k_{2}}^{C}, \cdots\}$$

where $1 \le j_{1}, j_{2}, \cdots \le l - 1$, and $l + 1 \le k_{1}, k_{2}, \cdots \le L$.

Sum-rate

$$R_{\rm sum} = \sum_{l=1}^{L} R_l.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Numerical Results

User transmission sum-rate

Consider 3-user and 4-user MWRCs.

► At *ρ* = 30*dB*:

- ▶ 1.25bits/s/Hz improvement for 3-user MWRCs.
- ► 2bits/s/Hz improvement for 4-user MWRCs.

Numerical Results

Uncoded system

► SER performance for uncoded Z[i]-based LNC.

Figure: 3-user MWRC.

Figure: 4-user MWRC.

- At 10⁻² SER level:
 - ▶ 3*dB* gain for a 3-user MWRC.
 - ▶ 4.5*dB* gain for a 4-user MWRC.

Numerical Results

Channel coded system

- Optimized memory order 1 convolutional lattice code at rate ¹/₂.
- Information sequence length is 99.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- LNC Construction from linear codes.
- LNC over GF(4)
- Opportunistic Pair-wise Compute-and-Forward

Acknowledgement

Tao Huang, UNSW

Qifu (Tyler) Sun, INC, CUHK

Kenneth W. Shum, INC, CUHK

Thanks!

